搜索

关于推进“5G+智能工厂”315建设的三年行动计划

分享到:
文章附图

中通融发(2019)27

关于推进“5G+智能工厂”315建设的三年行动计划

(2020-2022 年)

  智能工厂是指以工业互联网为基础,5G、人工智能、区块链、大数据、云计算、物联网等等新一代信息技术和先进制造技术深度融合,综合运用设计生产、检验检测、仓储物流等智能装备、工业软件和智能控制系统,覆盖研发设计、生产制造、经营管理、运维服务等生产全流程、管理全方位和产品全生命周期,泛在连接、柔性供给、动态优化和高效配置制造资源,实现响应时间缩短、资源消耗减少、质量效益提升、运营成本降低、环境生态友好的新型工厂。为深入贯彻落实“关于推动先进制造业和现代服务业深度融合发展的实施意见”的文件精神,推进“5G+智能工厂”建设,服务制造强国战略,现制定推进“5G+智能工厂”315建设三年行动计划如下:


一、总体行动目标

  到2022年,在能源、机械、电子等3大领域,创建1家以“5G+智能工厂”产业园区,培育5家“5G+智能工厂”样板及其解决方案企业,形成一批“5G+智能工厂”标准体系。

二、四大行动原则

    “5G+智能工厂”总体上分为离散型智能工厂和流程型智能工厂两类,每类智能工厂的建设及其解决方案遵循相应示范体系要求(具体内容附后),总体上“5G+智能工厂”遵循以下共同原则与要求:

1、设施高度互联。基于5G建立各级标识解析节点和公共递归解析节点,促进信息资源集成共享;基于5G建立工业互联网工厂内网,采用工业以太网、工业无源光网络PON、工业无线、IPv6 等技术,实现生产装备、传感器、控制系统与管理系统的互联;利用5G、 IPv6、工业物联网等技术实现工厂内、外网以及设计、生产、管理、服务各环节的互联,支持内、外网业务协同。

2、系统高度互通。工厂的总体设计、工艺流程及布局均已基于5G建立数字化模型可进行模拟仿真,应用数字化三维设计与工艺技术进行工艺设计、工艺仿真;建立制造执行系统(MES)实现计划、调度、质量、设备、生产、能效等管理功能;建立企业资源计划系统(ERP)实现供应链、物流、成本等企业经营管理功能;建立产品数据管理系统(PDM),实现产品设计、工艺数据的管理;建立试验数据管理系统(TDM),实现产品试验、测试、在线检测数据的管理;建立质量信息管理系统(QMS),实现供方质量检验、关键工序SPC 分析、过程质量数据采集、管理与分析等;在此基础上,制造执行系统(MES)、企业资源计划(ERP)与数字化三维设计仿真软件、产品数据管理(PDM)、试验数据管理(TDM)、质量信息管理(QMS)、供应链管理(SCM)、客户关系管理(CRM)等系统实现互通集成。或者采用智慧软件体系,通过5G+人-信息-物理系统(HCPS)上的微程序体系实现互联集成。

3 、数据高度互享。建立生产过程数据采集和分析系统(SCADA),实现生产进度、现场操作、质量检验、设备状态、物料传送等生产现场数据自动上传,并实现可视化管理。制造执行系统(MES)、企业资源计划(ERP)与数字化三维设计仿真软件、产品数据管理(PDM)、供应链管理(SCM)、客户关系管理(CRM)、质量管理系统(QMS)、试验数据管理系统(TDM)等系统之间的多元异构数据实现互享。或者采用智慧软件体系,通过5G+人-信息-物理系统(HCPS)和大数据操作系统(DTOS)上的微程序体系实现了多元异构数据实现互享。建有工业信息安全管理制度和技术防护体系,具备网络防护、应急响应等信息安全保障能力。建有功能安全保护系统,采用全生命周期方法有效避免系统失效。

4、业态高度互融。构建基于5G、人工智能、区块链、云计算等集成共享服务平台,实现从单纯提供产品向同时提供产品和服务转变,从大规模生产向个性化定制生产转变,推动先进制造业与现代服务业的深度融合。

三、四大行动计划

(一)建设项目库、资源池。分业分类制定“5G+智能工厂”示范体系,建立“5G+智能工厂”项目库、资源池。

(二)建设过程引导。对入库项目库、资源池进行诊断,形成操作可行的诊断报告,企业根据诊断报告意见完善项目实施方案,形成“5G+智能工厂”创建任务书,精实施准建设。

(三)加强工作协同。建立统筹协同的工作机制,强化信息基础设施建设,基于5G+工业互联网发展,加快发展智能装备、工业软件、人-信息-物理系统(HCPS)和微程序体系,培育“5G+智能工厂”样板及其解决方案供应商。

(四)优化服务保障。组织开展智能制造万里行等对接推进活动,促进智能装备制造商、系统集成商与制造业对接。协同政、产、学、研、用、金、协为“5G+智能工厂”建设全方位服务。加强经验总结,及时宣传推广“5G+智能工厂”创建经验及其解决方案。


附件1:



离散型“5G+智能工厂”建设要点(试行)


一、研发设计环节

  应用数字化三维设计与工艺设计软件进行产品、工艺设计与仿真,并通过虚拟样机、数字化虚拟工厂以及物理检测、试验等方式进行验证与优化;建立产品数据管理系统(PDM),实现产品多配置管理、研发项目管理,产品设计、工艺数据的集成管理。对产品生产过程建立虚拟模型,仿真并优化生产流程。对各环节制造数据、绩效数据集成分析,优化生产工艺,提高产品质量,降低生产成本。

二、生产制造环节

  建立制造执行系统(MES),实现生产计划管理、生产过程控制、产品质量管理、车间库存管理、项目看板管理智能化,提高企业制造执行能力。

(一)生产排程柔性化。建立高级计划与排产系统(APS),通过集中排程、可视化调度及时准确掌握原料、设备、人员、模具等生产信息,应用多种算法提高生产排程效率,实现柔性生产,全面适应多品种、小批量的订单需求。

(二)生产作业数字化。生产任务基于生产计划自动生产,并传送至制造执行系统(MES)生产采集终端,系统自动接收生产工单;通过制造执行系统(MES)生产采集终端可查询图纸、工艺标准等技术文件及物料清单(BOM)信息。

( 三) 过程质量可追溯。建立数据采集与监视控制系统

     (SCADA),通过条形码、二维码或无线射频识别(RFID)卡等识别技术,可查看每个产品生产过程的订单信息、报工信息、批次号、工作中心、设备信息、人员信息,实现生产工序数据跟踪,产品档案可按批次进行生产过程和使用物料的追溯;自动采集质量检测设备参数,产品质量实现在线自动检测、报警和诊断分析,提升质量检验效率与准确率;生产过程的质量数据实时更新,统计过程控制(SPC)自动生成,实现质量全程追溯。

(四)生产设备自管理。设备台账、点检、保养、维修等管理实现数字化;通过传感器采集设备的相关工艺参数,自动在线监测设备工作状态,实现在线数据处理和分析判断,及时进行设备故障自动报警和预诊断,部分设备可自动调试修复;设备综合效率(OEE)自动生成。

(五)生产管理透明化。可视化系统实时呈现包含生产状况

(生产数、生产效率、订单总数、完成率)、品质状况(生产数中的不良数、不良率)、设备状况等生产数据;生产加工进度通过各种报表、图表形式展示,直观有效地反映生产状况及品质状况。

(六)物流配送智能化。基于条形码、二维码、无线射频识别(RFID)等识别技术实现自动出入库管理,实现仓储配送与生产计划、制造执行以及企业资源管理等业务的集成;能够基于生产线实际生产情况拉动物料配送,根据客户和产品需求调整目标库存水平。

(七)能源资源利用集约化。建立能源综合管理监测系统,主要耗能设备实现实时监测与控制;建立产耗预测模型,水、电、气(汽)、煤、油以及物料等消耗实现实时监控、自动分析,实现能源资源的优化调度、平衡预测和有效管理。

三、经营管理环节

  建立企业资源计划(ERP),以系统化思维和供应链管理为核心,科学配置资源,优化运行模式,改善业务流程,提高决策效率。利用跨供应链的产品全生命周期管理系统(PLM),改善产品研发速度和敏捷性,增强交付客户化、为客户量身定做的能力。高级计划与排产系统(APS)应用拓展到企业上下游供应链,围绕核心企业的网链关系,在正向需求流及逆向供应流之间增加供需平衡管控机制,实现供应链各环节共同规划需求、订单和预测分析评估调整、产能和关键物料规划与控制、多工厂多车间协同、短中长期物料供需平衡管控等。

四、运维服务环节(针对部分企业)

  采用远程运维服务模式的智能装备/产品应配置开放的数据接口,具备数据采集、通信和远程控制等功能,利用工业互联网采集并上传设备状态、作业操作、环境情况等数据,并根据远程指令灵活调整设备运行参数。建立智能装备/产品远程运维服务平台,能够对装备/产品上传数据进行有效筛选、梳理、存储与管理,并通过数据挖掘、分析,向用户提供日常运行维护、在线检测、预测性维护、故障预警、诊断与修复、运行优化、远程升级等服务。智能装备/产品远程运维服务平台应与设备制造商的产品全生命周期管理系统(PLM)、客户关系管理系统(CRM)、产品研发管理系统实现信息共享。智能装备/产品远程运维服务平台应建立相应的专家库和专家咨询系统,能够为智能装备/产品的远程诊断提供智能决策支持,并向用户提出运行维护解决方案。

五、其他关键要素

(一)工业互联网。采用工业以太网、工业无线等技术,实现生产装备、传感器、控制系统与管理系统等的互联,实现数据的采集、流转和处理;利用工业物联网等技术,实现与工厂内、外网的互联互通,支持内、外网业务协同。采用各类标识技术自动识别零部件、在制品、工序、产品等对象,在仓储、生产过程中实现自动信息采集与处理,通过与国家工业互联网标识解析系统对接,实现对产品全生命周期管理。实现工厂管理软件之间的横向互联,实现数据流动、转换和互认。在工厂内部建设工业互联网平台,或利用公众网络上的工业互联网平台,实现数据的集成、分析和挖掘,支撑智能化生产、个性化定制、网络化协同、服务化延伸等应用。

(二)工业云平台。通过协同云平台,实现制造资源和需求的有效对接;实现面向需求的创新资源、设计能力的共享、互补和对接;实现面向订单的生产资源合理调配,以及制造过程各环节和供应链的并行组织生产。建有围绕全生产链协同共享的产品溯源体系,实现企业间涵盖产品生产制造与运维服务等环节的信息溯源服务。

(三)工业大数据平台。建立数据仓库或数据中台基础系统,应用微服务组件架构,建立算法和模型。通过数据治理及数据集成,实现决策分析平台,输出数据指标,指导设计研发、工艺和制造过程。

(四)人工智能(针对部分企业)。关键制造装备采用人工智能技术,通过嵌入计算机视听觉、生物特征识别、复杂环境识别、智能语音处理、自然语言理解、智能决策控制以及新型人机交互等技术,实现制造装备的自感知、自学习、自适应、自控制。应用机器学习、专家系统、深度学习等人工智能新技术对企业生产数据、财务数据、管理数据、采购数据、销售数据和消费者行为数据等数据资源进行分析和挖掘,实现对研发设计、生产制造、经营管理、物流销售、运维服务等环节的智能决策支持。

      六基于以人-信息-物理系统(HCPS)和大数据操作系统(DTOS)的智慧软件体系基础上的微程序体系搭建的“5G+智能工厂”。


附件2:

流程型“5+智能工厂”建设要点(试行)


一、工艺优化环节

应用数字化工艺设计技术进行设计与仿真,并通过数字化虚拟工厂、检测与实验等方式进行验证与优化。建立产品数据管理系统(PDM),实现产品多配置管理、研发项目管理,产品设计、工艺数据的集成管理。对产品生产过程建立虚拟模型,仿真并优化生产流程。对各环节制造数据、绩效数据集成分析,优化生产工艺,提高产品质量,降低生产成本。

二、生产制造环节

建立制造执行系统(MES),实现生产计划管理、生产过程控制、产品质量管理、车间库存管理、项目看板管理智能化,提高企业制造执行能力。

(一)生产排程柔性化。建立高级计划与排产系统(APS),通过集中排程、可视化调度、工业大数据等及时准确掌握原料、设备、人员等生产信息,应用多种算法提高生产排程效率,实现柔性生产,全面适应多品种、小批量的订单需求。

(二)生产作业数字化。生产管理系统和分布式控制系统

(DCS)全面集成,自动生成企业所需要的日报表、盘点表、月质量报表等相关报表。生产流水线上重要工艺参数、设备状态、料位、喂料量等实行实时监控;图形站上的生产流程图所有显示值均为动态数据,可定时刷新。

(三)过程质量可追溯。生产线安装大量传感器探测温度、压力、热能、振动和噪声等,用大数据分析整个生产流程,一旦某个流程偏离标准工艺,及时报警预判。质量管理系统和化验设备无缝集成,实现在线检测。企业基于同一个平台系统进行操作,与检测设备集成,自动形成使用数据,系统自动汇总质量数据信息。统计过程控制(SPC)自动生产,实现质量全程追溯。

(四)生产设备自管理。设备台账、点检、保养、维修等管理实现数字化;通过传感器采集设备的相关工艺参数,自动在线监测设备工作状态,实现在线数据处理和分析判断,及时进行设备故障自动报警和预诊断,部分设备可自动调试修复;设备综合效率(OEE)自动生成。

(五)生产管理透明化。可视化系统实时呈现包含生产状况

(生产数、生产效率、订单总数、完成率)、品质状况(生产数中的不良数、不良率)、设备状况等生产数据;生产加工进度通过各种报表、图表形式展示,直观有效地反映生产状况及品质状况。

(六)能源系统和水电仪表无缝整合。准确掌握各类能源介质分系统运行状况;完善能源计量体系,提供数据支撑、统一数据来源。

(七)物流配送智能化。基于条形码、二维码、无线射频识别(RFID)等识别技术实现自动出入库管理;实现仓储配送与生产计划、制造执行以及企业资源管理等业务的集成。能够基于生产线实际生产情况拉动物料配送,基于客户和产品需求调整目标库存水平。

三、经营管理环节

  建立企业资源计划(ERP),以系统化思维和供应链管理为核心,科学配置资源,优化运行模式,改善业务流程,提供决策效率。利用跨供应链的产品全生命周期管理系统(PLM),改善产品研发速度和敏捷性,增强交付客户化、为客户量身定做的能力。高级计划与排产系统(APS)应用拓展到企业上下游供应链,围绕核心企业的网链关系,在正向需求流及逆向供应流之间增加供需平衡管控机制,实现供应链各环节共同规划需求、订单和预测分析评估调整、产能和关键物料规划与控制、多工厂多车间协同、短中长期物料供需平衡管控等。

四、其他关键要素

(一)工业互联网。采用工业以太网、工业无线等技术,实现生产装备、传感器、控制系统与管理系统等的互联,实现数据的采集、流转和处理;利用工业物联网等技术,实现与工厂内、外网的互联互通,支持内、外网业务协同。采用各类标识技术自动识别原材料、在制品、工序、产品等对象,在仓储、生产过程中实现自动信息采集与处理,通过与国家工业互联网标识解析系统对接,实现对产品全生命周期管理。实现工厂管理软件之间的横向互联,实现数据流动、转换和互认。在工厂内部建设工业互联网平台,或利用公众网络上的工业互联网平台,实现数据的集成、分析和挖掘,支撑智能化生产、个性化定制、网络化协同、服务化延伸等应用。

(二)工业云平台。通过协同云平台,实现制造资源和需求的有效对接;实现面向需求的创新资源、设计能力的共享、互补和对接;实现面向订单的生产资源合理调配,以及制造过程各环节和供应链的并行组织生产。建有围绕全生产链协同共享的产品溯源体系,实现企业间涵盖产品生产制造与运维服务等环节的信息溯源服务。

(三)工业大数据平台。建立数据仓库或数据中台基础系统,应用微服务组件架构,建立算法和模型。通过数据治理及数据集成,实现决策分析平台,输出数据指标,指导设计研发、工艺和制造过程。

(四)人工智能(针对部分企业)。关键制造装备采用人工智能技术,通过嵌入计算机视听觉、生物特征识别、复杂环境识别、智能语音处理、自然语言理解、智能决策控制以及新型人机交互等技术,实现制造装备的自感知、自学习、自适应、自控制。应用机器学习、专家系统、深度学习等人工智能新技术对企业生产数据、财务数据、管理数据、采购数据、销售数据和消费者行为数据等数据资源进行分析和挖掘,实现对研发设计、生产制造、经营管理、物流销售、运维服务等环节的智能决策支持。   

五、基于以人-信息-物理系统(HCPS)和大数据操作系统(DTOS)的智慧软件体系基础上的微程序体系搭建的“5G+智能工厂”。


|
帮助信息
|
合作项目
|
版本说明